A Parallel Repetition Theorem for All Entangled Games
نویسنده
چکیده
The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz’s classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known. We prove that the entangled value of a two-player game G repeated n times in parallel is at most cGn −1/4 log n for a constant cG depending on G, provided that the entangled value of G is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.
منابع مشابه
Strong parallel repetition for free entangled games, with any number of players
We present a strong parallel repetition theorem for the entangled value of multi-player, oneround free games (games where the inputs come from a product distribution). Our result is the first parallel repetition theorem for entangled games involving more than two players. Furthermore, our theorem applies to games where the players are allowed to output (possibly entangled) quantum states as ans...
متن کاملParallel Repetition for Entangled k-player Games via Fast Quantum Search
We present two parallel repetition theorems for the entangled value of multi-player, one-round free games (games where the inputs come from a product distribution). Our first theorem shows that for a k-player free game G with entangled value val∗(G) = 1− , the n-fold repetition of G has entangled value val∗(G⊗n) at most (1− 3/2)Ω(n/sk4), where s is the answer length of any player. In contrast, ...
متن کاملParallel Repetition via Fortification: Analytic View and the Quantum Case
In a recent work, Moshkovitz [FOCS ’14] presented a transformation on two-player games called “fortification”, and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an analytic reformulation of Moshkovitz’s fortification framework, which was originally cast in combinatorial terms. This reformulation a...
متن کاملMultiplayer Parallel Repetition for Expanding Games
We investigate the value of parallel repetition of one-round games with any number of players k ≥ 2. It has been an open question whether an analogue of Raz’s Parallel Repetition Theorem holds for games with more than two players, i.e., whether the value of the repeated game decays exponentially with the number of repetitions. Verbitsky has shown, via a reduction to the density Hales-Jewett the...
متن کاملOn the Parallel Repetition of Multi-Player Games: The No-Signaling Case
We consider the natural extension of two-player nonlocal games to an arbitrary number of players. An important question for such nonlocal games is their behavior under parallel repetition. For two-player nonlocal games, it is known that both the classical and the non-signaling value of any game converges to zero exponentially fast under parallel repetition, given that the game is non-trivial to...
متن کامل